Opioid receptor-mediated inhibition of omega-conotoxin GVIA-sensitive calcium channel currents in rat intracardiac neurons.
نویسندگان
چکیده
Modulation of depolarization-activated ionic conductances by opioid receptor agonists was investigated in isolated parasympathetic neurons from neonatal rat intracardiac ganglia by using the whole cell perforated patch clamp technique. Met-enkephalin (10 muM) altered the action potential waveform, reducing the maximum amplitude and slowing the rate of rise and repolarization but the afterhyperpolarization was not appreciably altered. Under voltage clamp, 10 muM Met-enkephalin selectively and reversibly inhibited the peak amplitude of high-voltage-activated Ca2+ channel currents elicited at 0 mV by approximately 52% and increased three- to fourfold the time to peak. Met-enkephalin had no effect on the voltage dependence of steady-state inactivation but shifted the voltage dependence of activation to more positive membrane potentials whereby stronger depolarization was required to open Ca2+ channels. Half-maximal inhibition of Ba2+ current (IBa) amplitude was obtained with 270 nM Met-enkephalin or Leu-enkephalin. The opioid receptor subtype selective agonists, DAMGO and DADLE, but not DPDPE, inhibited IBa and were antagonized by the opioid receptor antagonists, naloxone and naltrindole with IC50s of 84 nM and 1 muM, respectively. The kappa-opioid receptor agonists, bremazocine and dynorphin A, did not affect Ca2+ channel current amplitude or kinetics. Taken together, these data suggest that enkephalin-induced inhibition of Ca2+ channels in rat intracardiac neurons is mediated primarily by the mu-opioid receptor type. Addition of Met-enkephalin after exposure to 300 nM omega-conotoxin GVIA, which blocked approximately 75% of the total Ca2+ channel current, failed to cause a further decrease of the residual current. Met-enkephalin inhibited the omega-conotoxin GVIA-sensitive but not the omega-conotoxin-insensitive IBa in rat intracardiac neurons. Dialysis of the cell with a GTP-free intracellular solution or preincubation of the neurons in Pertussis toxin (PTX) abolished the attenuation of IBa by Met-enkephalin, suggesting the involvement of a PTX-sensitive Gprotein in the signal transduction pathway. The activation of mu-opioid receptors and subsequent inhibition of N-type Ca2+ channels in the soma and terminals of postganglionic intracardiac neurons is likely to inhibit the release of ACh and thereby regulate vagal transmission to the mammalian heart.
منابع مشابه
mu-Opioid receptor activation reduces multiple components of high-threshold calcium current in rat sensory neurons.
Whole-cell patch-clamp recordings were used to characterize calcium channel types that are modulated by mu-opioid receptor activation in rat dorsal root ganglion (DRG) neurons. Five distinct components of high-threshold calcium current were isolated on the basis of their sensitivity to the selective channel blockers omega-conotoxin GVIA, nifedipine, omega-conotoxin MVIIC, or omega-agatoxin IVA....
متن کاملOpioid Receptor-Mediated Inhibition of v-Conotoxin GVIA-Sensitive Calcium Channel Currents in Rat Intracardiac Neurons
Adams, David J. and Carlo Trequattrini. Opioid receptor-medinized the effects of these substances in rabbit (Weitzell et ated inhibition of v-conotoxin GVIA-sensitive calcium channel al. 1984) and canine heart (Musha et al. 1989). currents in rat intracardiac neurons. J. Neurophysiol. 79: 753–762, Endogenous opioid peptides were found in rat and guinea 1998. Modulation of depolarization-activat...
متن کاملDynorphin A-mediated reduction in multiple calcium currents involves a G(o) alpha-subtype G protein in rat primary afferent neurons.
We examined the effect of antisera directed at specific G-protein subtype(s) on dynorphin A (Dyn A)-mediated reduction of calcium currents in rat dorsal root ganglia (DRG) neurons. Whole cell patch-clamp recordings were performed on acutely dissociated neurons. Dyn A (1 microM)-mediated decrease in calcium currents was inhibited > 90% by the preferential kappa-receptor antagonist norbinaltorphi...
متن کاملDynorphin A-Mediated Reduction in Multiple Calcium Currents Involves a Goa-Subtype G Protein in Rat Primary Afferent Neurons
Wiley, John W., Hylan C. Moises, Robert A. Gross, and Robert sensory afferent neurons and antagonize transmission of noL. Macdonald. Dynorphin A-mediated reduction in multiple calciceptive information entering CNS presumably via their cium currents involves a Goa-subtype G protein in rat primary action to reduce calcium currents. The N-type channels are afferent neurons. J. Neurophysiol. 77: 13...
متن کاملCannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons.
Cannabinoids and their analogues have been found to inhibit N- and P/Q-type Ca2+ currents in cell lines and sympathetic neurons transfected with cannabinoid CB1 receptor. However, the effects of cannabinoids on Ca2+ currents in the CNS are largely unexplored. In this study we investigated whether these compounds inhibit Ca2+ channels in cultured rat hippocampal neurons. With the use of antibodi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 79 2 شماره
صفحات -
تاریخ انتشار 1998